Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size


E-mail Print PDF

Malays. Appl. Biol. (2014) 43(1): 31–39






1Fisheries Department, Faculty of Fisheries and Aqua Industries (FPAI),
University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
2Institute of Oceanography and Maritime studies (INOCEM),
3Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah,
Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia.
4Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah,
Bandar Indera Mahkota, 25200, Kuantan Pahang, Malaysia.
*Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it , This e-mail address is being protected from spambots. You need JavaScript enabled to view it
Telephone: +60-109019245




Effect of various environmental stresses on the fatty acid (FA) profile of benthic harpacticoid copepod (Pararobertsonia sp.) was checked In vitro. Samples were exposed to different pH (5, 7 and 9) and salinity (15, 20, 25, 30 and 35 ppt) at constant temperature 25ºC for 30 days. After the treatment, different fatty acid levels were determined using Gas Chromatography and Mass Spectrometry (GC-MS). Results clearly indicated the positive influence of the combined effect of environmental parameters on the fatty acid content in experimental samples. The detected FAs were ranging from C5-24. Palmetic and oleic acids were in higher percentage in all the experiments. Results clearly indicated that pH7:25ppt & 35ppt at 25ºC ambient water temperature would help in producing copepods (Pararobertsonia sp.) that expresses rich fatty acid profile with high EPA/DHA ratio.

Key words: Fatty acid, harpacticoid copepod, Pararobertsonia sp., environmental stress


Ajiboye, O. O., Yakubu, A. F., Adams, T. E., Olaji, E. D., & Nwogu, N. A. 2011. A review of the use of copepods in marine fish larviculture. Reviews in Fish Biology and Fisheries, 21(2), 225-246. doi: 10.1007/s11160-010-9169-3.

Copeman, L. A., Parrish, C. C., Brown, J. A., & Harel, M. 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture, 210(1–4), 285-304. doi: 10.1016/s0044-8486(01)00849-3.

Cutts, C. J. 2003. Culture of harpacticoid copepods: Potential as live feed for rearing marine fish Advances in Marine Biology 44: 295-316.

Dalsgaard, J., St John, M., Kattner, G., Müller-Navarra, D., Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology. 46: 225–340.

Drillet, G., Jørgensen, N. O. G., Sørensen, T. F., Ramløv, H., & Hansen, B. W. 2006. Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquaculture Research, 37(8), 756-772. doi: 10.1111/j.1365-2109.2006.01489.x.

Evjemo, J. O., Reitan, K. I., & Olsen, Y. 2003. Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 227(1–4), 191-210. doi: 10.1016/s0044-8486(03)00503-9.

Fraser, A. J., Sargent, J. R., Gamble, J. C., & Seaton, D. D. 1989. Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Marine Chemistry, 27(1–2), 1-18. doi: 10.1016/0304-4203(89)90024-8.

Gunstone, F.D. and F.P. Norris, 1983. Lipids in Foods. Pergamon Press, New York.

Ichihara K, Fukubayashi Y. 2010. Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research. 51(3):635-40.

Kassim Zaleha, and Ibrahim Busra. 2012. Culture of Harpacticoid Copepods: Understanding the Reproduction and Effect of Environmental Factors, Aquaculture, Dr. Zainal Muchlisin (Ed.), ISBN: 978-953-307-974-5, InTech, Available from:

Lahnsteiner, F., Kletzl, M., & Weismann, T. 2009. The risk of parasite transfer to juvenile fishes by live copepod food with the example Triaenophorus crassus and Triaenophorus nodulosus. Aquaculture, 295(1–2): 120-125. doi: 10.1016/j.aquaculture.2009.06.038.

Nanton, D. A., & Castell, J. D. 1998. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp., for use as a live food for marine fish larvae. Aquaculture, 163(3–4), 251-261. doi: 10.1016/s0044-8486(98)00236-1.

Norsker, N.-H., & Støttrup, J. G. 1994. The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture, 125(1–2), 155-166. doi: 10.1016/0044-8486(94)90292-5.

Olsen, R. E., Henderson, R. J., & Pedersen, T. 1991. The influence of dietary lipid classes on the fatty acid composition of small cod Gadus morhua L. juveniles reared in an enclosure in northern Norway. Journal of Experimental Marine Biology and Ecology, 148(1), 59-76. doi: 10.1016/0022-0981(91)90147-0.

Parrish, C. C., Abrajano, T. A., Budge, S. M., Helleur, R. J., Hudson, E. D., Pulchan, K., & Ramos, C. 2000. Lipid and Phenolic Biomarkers in Marine Ecosystems: Analysis and Applications. In P. J. Wangersky (Ed.), Marine Chemistry 5: 193-223.

Parrish, C. C., French, V. M., & Whiticar, M. J. 2012. Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata and Nitokra lacustris) fed various combinations of autotrophic and heterotrophic protists. Journal of Plankton Research, 34(5), 356-375. doi: 10.1093/plankt/fbs003.

Püttmann, M., Krug, H., von Ochsenstein, E., and Kattermann, R. 1993. Fast HPLC Determination of Serum Free Fatty Acids in the Picomole Range." Clinical chemistry 39: 825-32.

Støttrup, J. G., & Norsker, N. H. (1997). Production and use of copepods in marine fish larviculture. Aquaculture, 155(1–4), 231-247. doi: 10.1016/s0044-8486(97)00120-8.

Tocher, D. R., Carr, J., & Sargent, J. R. 1989. Polyunsaturated fatty acid metabolism in fish cells: differential metabolism of (n-3) and (n-6) series acids by cultured cells orginating from a freshwater teleost fish and from a marine teleost fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 94(2), 367-374. doi: 10.1016/0305-0491(89)90357-x.

van der Meeren, T., Wilhelmsen, S., Klungsosyr, J., & Kvenseth, P. G. 1993. Fatty Acid Composition of Unfed Cod Larvae Gadus morhua L. and Cod Larvae Feeding on Natural Plankton in Large Enclosures. Journal of the World Aquaculture Society, 24(2), 167-185. doi: 10.1111/j.1749-7345.1993.tb00006.x.

Vizcaíno-Ochoa, V., Lazo, J. P., Barón-Sevilla, B., & Drawbridge, M. A. 2010. The effect of dietary docosahexaenoic acid (DHA) on growth, survival and pigmentation of California halibut Paralichthys californicus larvae (Ayres, 1810). Aquaculture, 302(3–4), 228-234. doi: 10.1016/j.aquaculture.2010.02.022.

Zaleha, K. & Farahiyah-Ilyana J. 2010. Culture and growth of a marine harpacticoid, Pararobertsonia sp. in different salinity and temperature. Sains Malaysiana 39(1): 137-141.


Latest MABJ Issue

Vol 49(2) July 2020


Table of content

Latest news!

Malaysian Applied Biology is listed in the databases and indexed in Thomson Reuters Master Journal List, Elsevier, Mycite, Biosis, Zoological Records, UDLedge Life Science Index, CNKI, J-Gate and CABI.

Malaysian Applied Biology is indexed in Scopus since issue 41(1) 2012.

According to MyCite 2014 report, MABJ ranked 95 out of 142 Malaysian journals in terms of yearly impact factor.